================================================== ps0733 d:\northps\block123-14dec07\ps0733.txt 14 Dec 07 19:40:23 Friday elapsed time 00:08:27 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 99.889 **low-curvature dc area = 0.003 km2 1st-return RMSE, low-curvature areas = 0.566 95p = 1.035, 98p = 1.193, 99.5p = 1.376 BE RMSE = 1.459 95p = 2.912, 98p = 4.289, 99.5p = 6.904 2238245 unique returns and 0 duplicate returns 318742.836347 1357275.74 703255.53 889.32 1 1 318756.052231 1358358.25 706251.49 1374.47 1 1 594.675116 319350.727347 1359757.87 706251.87 1878.67 2 2 319368.049711 1357276.55 703253.93 883.54 1 1 1175.799866 320543.849577 1357330.56 703254.01 826.33 2 1 320557.430844 1360264.99 706251.89 2132.75 2 1 562.039601 321119.470445 1360266.53 706249.15 2147.02 2 1 321136.440564 1358487.92 703252.75 949.74 2 1 1116548 1st returns 1121697 2nd returns 0 3rd returns 0 4th returns 259367 ground returns 0 blunders curvature versus slope n = 1120489 X=0, Y = 27.45 +/- 17.79 Weighted least-squares fit: Y = 54.2 + 2.036 X + -0.02160 X**2 slope versus dZ, curvature < 5 n = 47766 Weighted least-squares fit: Y = 11.2 + 0.360 X + 0.00187 X**2 at X = 100, Y = 65.9 effective RMSE xy = 101.9 slope versus dZ, curvature < 15 n = 150469 Weighted least-squares fit: Y = 11.0 + 0.454 X + 0.00129 X**2 curvature versus dZ, slope < 10 n = 11611 X=0, Y = 13.76 +/- 7.93 Weighted least-squares fit: Y = 13.5 + 1.231 X + 0.08589 X**2 Number of samples 1137326 Max dz = 900 Mean dz = 59 RMS dz = 88.3006228744 100cm = 80.9722102546 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90