================================================== ps1465 d:\northps\block123-14dec07\ps1465.txt 15 Dec 07 03:00:27 Saturday elapsed time 00:07:25 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 98.174 **low-curvature dc area = 0.013 km2 1st-return RMSE, low-curvature areas = 0.683 95p = 1.332, 98p = 1.607, 99.5p = 1.913 BE RMSE = 1.600 95p = 3.382, 98p = 4.959, 99.5p = 7.510 2069672 unique returns and 0 duplicate returns 436435.01527 1293663.49 661252.29 1987.45 1 1 436448.00469 1294266.75 664249.65 1504.97 2 1 902.403394 437350.408084 1294230.73 664251.66 1503.65 1 1 437366.51667 1291293.87 661252.21 1943.74 2 1 746.711992 438113.228662 1291270.92 661252.27 1930.45 2 1 438127.800546 1294018.03 664251.69 1466.75 2 1 901.726309 439029.526855 1292015.66 664251.88 1369.64 2 1 439043.916978 1291274.9 661256.07 1924.14 2 1 1032977 1st returns 1036695 2nd returns 0 3rd returns 0 4th returns 270011 ground returns 0 blunders curvature versus slope n = 803530 X=0, Y = 34.87 +/- 21.60 Weighted least-squares fit: Y = 52.0 + 2.092 X + -0.02282 X**2 slope versus dZ, curvature < 5 n = 70069 Weighted least-squares fit: Y = 10.6 + 0.456 X + 0.00189 X**2 at X = 100, Y = 75.0 effective RMSE xy = 116.7 slope versus dZ, curvature < 15 n = 184804 Weighted least-squares fit: Y = 10.6 + 0.548 X + 0.00088 X**2 curvature versus dZ, slope < 10 n = 17963 X=0, Y = 15.51 +/- 7.68 Weighted least-squares fit: Y = 11.4 + 4.073 X + -0.09100 X**2 Number of samples 820126 Max dz = 900 Mean dz = 62 RMS dz = 89.5153618101 100cm = 79.5738703565 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90