================================================== ps2185 d:\northps\block456-14jan08\ps2185.txt 15 Jan 08 18:11:17 Tuesday elapsed time 00:10:15 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 45.353 **low-curvature dc area = 0.044 km2 1st-return RMSE, low-curvature areas = 1.002 95p = 1.896, 98p = 2.193, 99.5p = 2.583 BE RMSE = 3.545 95p = 5.983, 98p = 11.319, 99.5p = 22.208 1771215 unique returns and 0 duplicate returns 235651.915519 1470302.52 625253.67 4456.99 2 1 235656.447864 1471269.98 625541.78 4098.66 2 1 296.92006 235953.367924 1471269.49 627884.17 3788.11 2 1 235969.706927 1468271.37 625254.66 4864.91 1 1 648.103831 236617.810758 1468270.05 625857.95 4918.64 1 1 236632.598506 1471268.78 628212.42 3915.92 2 1 299.908219 236932.506725 1469995.6 628251.56 4056.48 2 1 236939.806218 1468270.57 628154.03 5152.51 2 1 880610 1st returns 890605 2nd returns 0 3rd returns 0 4th returns 457587 ground returns 0 blunders curvature versus slope n = 194667 X=0, Y = 49.58 +/- 24.99 Weighted least-squares fit: Y = 61.3 + 1.905 X + -0.02024 X**2 slope versus dZ, curvature < 5 n = 93189 Weighted least-squares fit: Y = 22.9 + 0.264 X + -0.00063 X**2 at X = 100, Y = 43.0 effective RMSE xy = 57.2 slope versus dZ, curvature < 15 n = 151788 Weighted least-squares fit: Y = 23.2 + 0.262 X + -0.00026 X**2 curvature versus dZ, slope < 10 n = 5871 X=0, Y = 21.82 +/- 7.23 Weighted least-squares fit: Y = 21.6 + 1.991 X + -0.33317 X**2 Number of samples 195529 Max dz = 900 Mean dz = 35 RMS dz = 76.4329771761 100cm = 97.1385318802 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90