================================================== ps3637 d:\northps\block123-14dec07\ps3637.txt 15 Dec 07 15:19:49 Saturday elapsed time 00:05:59 Rectangular area = 0.876 km2 Data area = 0.874 km2 *percent double coverage = 38.401 **low-curvature dc area = 0.004 km2 1st-return RMSE, low-curvature areas = 2.222 95p = 3.610, 98p = 3.841, 99.5p = 4.234 BE RMSE = 2.620 95p = 5.153, 98p = 7.020, 99.5p = 10.214 1763268 unique returns and 0 duplicate returns 181254.756385 1327268.99 577690.96 3361.88 2 1 181268.423808 1324272.17 577252.62 3655.62 1 2 455.343627 181723.767435 1324271.05 579585.34 3144.25 1 1 181740.052371 1327269.76 577256.87 3590.67 2 1 1050.434289 182790.48666 1327269.77 580245.7 3608.73 1 1 182803.9924 1324270.1 578806.62 3399.14 1 1 688.208382 183492.200782 1324274.23 580251.44 3132.53 2 1 183494.502075 1324779.98 580250.59 3085.12 1 1 876838 1st returns 886430 2nd returns 0 3rd returns 0 4th returns 236187 ground returns 0 blunders curvature versus slope n = 101807 X=0, Y = 36.20 +/- 21.13 Weighted least-squares fit: Y = 53.6 + 2.216 X + -0.02458 X**2 slope versus dZ, curvature < 5 n = 23321 Weighted least-squares fit: Y = 80.6 + -0.518 X + 0.01001 X**2 at X = 100, Y = 128.9 effective RMSE xy = 158.0 slope versus dZ, curvature < 15 n = 41287 Weighted least-squares fit: Y = 79.2 + -0.392 X + 0.00921 X**2 curvature versus dZ, slope < 10 n = 3940 X=0, Y = 84.83 +/- 28.34 Weighted least-squares fit: Y = 84.3 + 1.403 X + -0.55902 X**2 Number of samples 102785 Max dz = 900 Mean dz = 101 RMS dz = 137.113092008 100cm = 56.165782945 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90