================================================== ps3765 d:\northps\block123-14dec07\ps3765.txt 15 Dec 07 15:54:45 Saturday elapsed time 00:07:12 Rectangular area = 0.876 km2 Data area = 0.874 km2 *percent double coverage = 97.602 **low-curvature dc area = 0.012 km2 1st-return RMSE, low-curvature areas = 1.126 95p = 1.962, 98p = 2.299, 99.5p = 3.197 BE RMSE = 2.026 95p = 3.913, 98p = 5.297, 99.5p = 7.942 1785784 unique returns and 0 duplicate returns 180410.921499 1366270.45 574756.72 1257.21 1 1 180424.820248 1369268.48 574258.36 1298.47 1 1 637.739463 181062.559711 1369268.51 574253.5 1292.45 1 1 181076.035951 1366270.23 576587.86 1915.37 1 1 847.445004 181923.480955 1366270.64 577226.29 1988.45 1 2 181938.101252 1369269.08 574265.73 1295.26 2 1 664.170203 182602.271455 1369267.03 577250.94 2135.75 2 2 182615.372154 1366270.04 577224.77 1989.66 2 1 888329 1st returns 897455 2nd returns 0 3rd returns 0 4th returns 138630 ground returns 0 blunders curvature versus slope n = 370281 X=0, Y = 39.70 +/- 21.05 Weighted least-squares fit: Y = 55.5 + 2.188 X + -0.02415 X**2 slope versus dZ, curvature < 5 n = 51419 Weighted least-squares fit: Y = 22.3 + 0.534 X + 0.00093 X**2 at X = 100, Y = 85.0 effective RMSE xy = 128.8 slope versus dZ, curvature < 15 n = 127297 Weighted least-squares fit: Y = 23.1 + 0.514 X + 0.00139 X**2 curvature versus dZ, slope < 10 n = 3590 X=0, Y = 23.85 +/- 16.89 Weighted least-squares fit: Y = 26.4 + 2.562 X + -0.03907 X**2 Number of samples 373481 Max dz = 900 Mean dz = 71 RMS dz = 111.220501707 100cm = 78.5520548569 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90