================================================== ps3883 d:\northps\block456-14jan08\ps3883.txt 16 Jan 08 18:32:27 Wednesday elapsed time 00:07:19 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 99.277 **low-curvature dc area = 0.003 km2 1st-return RMSE, low-curvature areas = 2.297 95p = 2.828, 98p = 2.946, 99.5p = 3.173 BE RMSE = 2.193 95p = 4.055, 98p = 5.432, 99.5p = 8.098 1908188 unique returns and 0 duplicate returns 179531.242925 1384269.82 572570.88 1239.34 1 1 179545.077851 1381270.38 571812.09 1155.9 1 1 934.660504 180479.738355 1381270.88 574154.37 1222.78 2 1 180495.724154 1384269.1 571261.5 1249.34 1 1 500.938313 180996.662467 1384265.96 574211.58 1286.71 2 1 181010.433974 1381270.57 572412.56 1123.39 2 1 979.483974 181989.917948 1381277.46 574242.93 1233.53 2 1 182002.98476 1384269.28 573730.55 1254.26 2 2 949980 1st returns 958208 2nd returns 0 3rd returns 0 4th returns 128744 ground returns 0 blunders curvature versus slope n = 491949 X=0, Y = 27.16 +/- 19.84 Weighted least-squares fit: Y = 46.8 + 2.423 X + -0.02569 X**2 slope versus dZ, curvature < 5 n = 33007 Weighted least-squares fit: Y = 63.4 + -0.030 X + 0.00285 X**2 at X = 100, Y = 89.0 effective RMSE xy = 98.0 slope versus dZ, curvature < 15 n = 100954 Weighted least-squares fit: Y = 61.7 + -0.073 X + 0.00357 X**2 curvature versus dZ, slope < 10 n = 15072 X=0, Y = 66.78 +/- 22.31 Weighted least-squares fit: Y = 61.0 + 0.839 X + -0.00387 X**2 Number of samples 495941 Max dz = 900 Mean dz = 79 RMS dz = 109.183332061 100cm = 75.1010704902 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90